\qquad

Graph. Show and label any asymptotes. Give Domain and Range of each. It would help to graph the parent.
2. $y=(2)^{x+3} \quad p^{+\infty} y=2 x$

6. $f(x)=\log _{2}(x-3)$
7. $f(x)=\log _{2}(x+2)-4$

Solve.
8. The population of the United States in 2010 was about 308 million with an average annual rate of increase of about 2%. Write an exponential function to model this situation. What will the population be in 2050 ?

$$
y=308(1.02)^{40}=
$$

9. Write an exponential function for a graph that includes the points $(1,6)$ and $(0,2)$.

$$
\frac{2}{=}, \frac{4}{1} \quad y=2(3)^{x}
$$

10. The population of mosquitoes grows exponentially. While doing some research on them, I collected some in a tube and after 1 day I counted 3, but after 4 days, I counted 10 mosquitoes. Write an exponential function for this situation.

$$
(1,3)(4,10) \rightarrow \text { calculate r } \rightarrow y=2(1,5)^{\circ}
$$

11. Using the fact that the element Gandalfadorium has a half-life of 6 hours, find the amount of Gandalfadorium that remains from a 60 mg supply after 20 hours.

$$
y=60\left(\frac{1}{2}\right)^{2 \%}
$$

12. Suppose you invest $\$ 100$ at an annual interest rate of 4.8% compounded continuously. How much will you have in the account after three years? How long will it take to have $\$ 200$-in your-account?

Write each equation in logarithmic form.
13. $3^{4}=81$
14. $10^{-2}=0.01$
15. $2^{-4}=\frac{1}{16}$

$$
\log _{3} 81=4
$$

$$
\log _{i 0}: i=-2
$$

$$
\log _{2} \frac{1}{16}=-4
$$

$$
\begin{array}{r}
\log _{e} 2=048 \\
t-14.44
\end{array}
$$

Evaluate each logarithm without using a calculator.
16. $\log _{3} 81=x$
17. $\log _{4} 1$

$$
\begin{array}{r}
4^{x}=1 \\
x=0
\end{array}
$$

18. $\log 10000$
19. $\log _{2}\left(\frac{1}{64}\right)$

$$
10^{x}=10,420
$$

$$
\begin{aligned}
& 2^{x}=\frac{1}{64} \\
& x=-6
\end{aligned}
$$

20. A computer valued at $\$ 6500$ depreciates at the rate of 14% per year.
a. Write a function that models the value of the computer.

$$
y=60500(.86)^{x}
$$

b. Find the yalue-of the-emputer after 3 years.

$$
\text { का } 134.36
$$

c. When will the computer be worth less than $\$ 1500$?

$$
1500=6500(.86)^{x}
$$

\qquad

$$
\log .86 \cdot 23=x
$$

$$
.23=.6
$$

$$
x=9.74 \text { yo }
$$

$$
x=9.7-1 y
$$

$$
100=\frac{x^{2}}{4}
$$

22.

$$
400=x^{2}
$$

$$
\pm 20=x
$$

$$
\begin{aligned}
& \frac{\log (2 x+5)=\frac{4}{2}}{2} \\
& \log (2 x+5)=2 \\
& 10^{2}=2 x+5
\end{aligned}
$$

$$
\begin{aligned}
& 100=2 x+5 \\
& 473=x
\end{aligned}
$$

24. $-7+\log 2 x=4$

$$
\log 2 x=11
$$

$$
10^{\prime \prime}=2 x \quad x=50,000,000,000
$$

26. $\log _{3} \frac{2 x}{41}=2$

$$
\begin{aligned}
& 3^{2}=\frac{2 x}{41} \\
& x=184.5
\end{aligned}
$$

28. $\ln (x-5)=15$

$$
\begin{aligned}
& \log \frac{x^{2}}{4}=2 \\
& 10^{2}=\frac{x^{2}}{4} \\
& \text { 23. } e^{2 n-5}=500 \\
& \log e 500=2 n-5 \\
& 25=5.5 \\
& 5^{2 x}=20 \\
& \log _{5} 20=2 x \\
& 27.3^{x+2}-4=12 \\
& 3+2=16 \\
& \log _{3}=16=x+2 \\
& x=52
\end{aligned}
$$

$$
\ldots
$$

$$
\log _{c}(x-5)=\sqrt{5}
$$

$$
e^{15}=x-5
$$

Expand each log into multiple logs.

$$
x=3,209,022.31
$$

$$
\frac{\text { 29. } \log \sqrt{\frac{2 x}{y}}}{\log \left(\frac{2 x}{y}\right)^{1 / 2}\left[\left(5 \log _{4} x+7 \log _{4} y\right)-\left(\log _{4} \frac{x^{5} y^{7}}{7 y^{4}}\right.\right.} \frac{\text { 31. } \log _{7} \frac{9}{s^{2} t^{\frac{1}{3}}}}{\left.\left.\frac{1}{2} \log 2+4 \log _{y} v\right)\right]}
$$

$$
\begin{gathered}
\log (2 x+5)=2 \\
10^{2}=2 x+5
\end{gathered} \quad 47=x
$$

21. $2 \log x-\log 4=2$

Write as a single logarithm.
32. $3 \log _{2} 2-\log _{2} 4$
33. $\frac{1}{4} \ln 2+\frac{1}{4} \ln x$
$\log \frac{2^{3}}{a}$

$$
\log _{2} 2
$$

34. $2 \log _{4} x+\log _{4} n-\log _{4} p$

35. Diego decided to invest his $\$ 500$ tax refund rather than spending it. He found a bank that would pay him 4% interest, compounded continuously. If he deposits the entire $\$ 500$ and does not deposit or withdraw any other amount, when will he have $\$ 2000$?
36. The half-life of carbon-14 is known to be 5720 years. Doctor Frankenstein has 300 grams of carbon-14 in his experimental laboratory. If untouched, how long would it take until there is only 200 grams left?

$$
\begin{array}{ll}
200=300\left(\frac{1}{2}\right)^{x / 5720} & \log _{\frac{1}{2}} \frac{2}{3}=\frac{x}{5720} \\
\frac{2}{3}=\left(\frac{1}{2}\right)^{x / 5720} & x=3345.99 \mathrm{yrs}
\end{array}
$$

39. How long would it take money to triple, if compounded continuously at 5% ?
40. Find the equation of each exponential function, $g(x)$, whose graph is shown. Each graph involves one or more transformation of the graph of $f(x)=2^{x}$

