

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

X

Answers for Lesson 7-8 Exercises (cont.)

Chapter 7 184

- **35.** $y = 8\sqrt{x 2}$ 3; the graph is the graph of $y = 8\sqrt{x}$ translated 2 units to the right and 3 units down.
- **36.** $y = 3\sqrt[3]{x-2} + 1$; the graph is the graph of $y = 3\sqrt[3]{x}$ translated 2 units to the right and 1 unit up.

X

16

4

8

12

b. Both domains are $x \ge 2$. The range of $y = \sqrt{x - 2} + 1$ is $y \ge 1$. The range of $y = \sqrt{x - 2} + 1$ is $y \le 1$.

56.
$$y = 5\sqrt{x - 4}$$
 - 1; the graph is the same as $y = 5\sqrt{x}$, translated 4 units to the right and 1 down.

- **57.** $y = 6\sqrt{x + 3} + 4$; the graph is the graph of $y = 6\sqrt{x}$ translated 3 units to the left and 4 up.
- **58.** $y = -2\sqrt[3]{x \frac{1}{4}}$; the graph is the graph of $y = -2\sqrt[3]{x}$ translated $\frac{1}{4}$ unit to the right.
- **59.** $y = \frac{1}{2}\sqrt{x 1}$ 2; the graph is the same as $y = \frac{1}{2}\sqrt{x}$ translated 1 unit right and 2 down.
- **60.** $y = 10 \frac{1}{3}\sqrt[3]{x + 3}$; the graph is the same as $y = -\frac{1}{3}\sqrt[3]{x}$ translated 3 units to the left and 10 up.
- **61.** $y = \frac{1}{3}\sqrt{x + 9} + 5$; the graph is the same as $y = \frac{1}{3}\sqrt{x}$, translated 9 units to the left and 5 up.
- **62.** Answers may vary. Sample: $y = \sqrt[3]{x-2} + 4$

64. If a > 0, the graph is stretched vertically by a factor of *a*. If a < 0, the graph is reflected over the *x*-axis and stretched vertically by a factor of |a|.

Algebra 2

Answers for Lesson 7-8 Exercises (cont.)

- **65.** $y = -\sqrt{2}\sqrt{x + 4}$; the graph is the graph of $y = -\sqrt{2x}$ translated 4 units to the left; domain: $x \ge -4$, range: $y \le 0$.
- **66.** $y = -\sqrt{8}\sqrt{x \frac{3}{4}}$; the graph is the graph of $y = -\sqrt{8x}$ translated $\frac{3}{4}$ units to the right; domain: $x \ge \frac{3}{4}$, range: $y \le 0$.
- **67.** $y = \sqrt{3} \cdot \sqrt{x \frac{5}{3}} + 6$; the graph is the graph of $y = \sqrt{3x}$ translated $\frac{5}{3}$ units to the right and 6 units up; domain: $x \ge \frac{5}{3}$, range: $y \ge 6$.
- **68.** $y = -\sqrt{12} \cdot \sqrt{x + \frac{3}{2}} 3$; the graph is the graph of $y = -\sqrt{12x}$ translated $\frac{3}{2}$ units to the left and 3 units down; domain: $x \ge -\frac{3}{2}$, range: $y \le -3$.

- **b.** The graph of $y = \sqrt{h x}$ is a reflection of the graph of $y = \sqrt{x h}$ in the line x = h.
- **70.** for all odd positive integers