Answers for Lesson 7-7 Exercises

6.
$$y = \frac{1}{2}x + \frac{1}{2}$$
; yes
8. $y = \pm \sqrt{\frac{5-x}{2}}$; no
10. $y = \pm \sqrt{\frac{x+5}{3}}$; no
12. $y = \pm \frac{\sqrt{x+4}}{3}$; no

© Pearson Education, Inc., publishing as Pearson Prentice Hall. All rights reserved.

177

Answers for Lesson 7-7 Exercises (cont.)

24. $f^{-1}(x) = x^2 + 5 \ x \ge 0$, domain $f: \{x \mid x \ge 5\}$, range $f: \{y \mid y \ge 0\}$, domain $f^{-1}: \{x \mid x \ge 0\}$, and range $f^{-1}: \{y \mid y \ge 2\}; f^{-1}$ is a function.

X

Answers for Lesson 7-7 Exercises (cont.)

25. $f^{-1}(x) = x^2 - 7$ $x \ge 0$, domain $f: \{x \mid x \ge -7\}$, range $f: \{y \mid y \ge 0\}$, domain $f^{-1}: \{x \mid x \ge 0\}$, and range $f^{-1}: \{y \mid y \ge -7\}$; f^{-1} is a function. **26.** $f^{-1}(x) = \frac{3 - x^2}{2} x \ge 0$, domain $f: \{x \mid x \le \frac{3}{2}\}$, range $f: \{y \mid y \ge 0\}$, domain f^{-1} : { $x \mid x \ge 0$ }, and range f^{-1} : { $y \mid y \le \frac{3}{2}$ }; f^{-1} is a function. **27.** $f^{-1}(x) = \pm \sqrt{\frac{x-2}{2}} \ x \ge 2$, domain *f*: all reals, range *f*: {*y* | *y* ≥ 2}, domain f^{-1} : $\{x \mid x \ge 2\}$, and range f^{-1} : all reals; f^{-1} is not a function. **28.** $f^{-1}(x) = 4\sqrt{1 - x}$ $x \le 1$, domain *f*: all reals, range $f: \{y \mid y \leq 1\}$, domain $f^{-1}: \{x \mid x \leq 1\}$, and range $f^{-1}:$ all reals; f^{-1} is not a function. **29.** a. $F = \frac{5}{9}(C - 32)$; yes **b.** -3.89°F **30. a.** $r = \sqrt[3]{\frac{3V}{4\pi}}$; yes **b.** 20.29 ft **31.** 10 **33.** 0.2 **32.** -10 **34.** d **35.** $f^{-1}(x) = \pm \sqrt{\frac{2x+8}{3}}$ no **36.** $f^{-1}(x) = \pm 2\sqrt{\frac{x}{3}}$; no **37.** $f^{-1}(x) = \frac{x^2 - 6x + 10}{2}, x \ge 3$; yes **39.** $f^{-1}(x) = \frac{1 \pm \sqrt{x}}{2}$; no **38.** $f^{-1}(x) = \pm \sqrt{x} - 1$; no **40.** $f^{-1}(x) = -1 \pm \sqrt{x+1}$; no **41.** $f^{-1}(x) = \sqrt[3]{x}$; yes **42.** $f^{-1}(x) = \pm \sqrt[4]{x}$: no **43.** $f^{-1}(x) = \pm \sqrt{\frac{5x-5}{2}}$; no **44.** $x = \frac{v^2}{64}$; 25 ft, 6.25 ft

45. The range of the inverse is the domain of *f*, which is $x \ge 1$.

46. 2 and 5

- **47.** $f^{-1}(x) = x^2 x \le 0$, domain of $f: \{x \mid x \ge 0\}$, range of $f:\{1 \ y \mid y \ge 0\}$, domain of $f^{-1}: \{x \mid x \ge 0\}$, range of $f^{-1}: \{y \mid y \ge 20\}$, and f^{-1} is a function.
- **48.** $f^{-1}(x) = (x 3)^2 x \ge 3$, domain of $f: \{x \mid x \ge 0\}$, range of $f: \{y \mid y \ge 3\}$, domain of $f^{-1}: \{x \mid x \ge 3\}$, range of $f^{-1}: \{y \mid y \ge 0\}$, and f^{-1} is a function.
- **49.** $f^{-1}(x) = 3 x^2 x \ge 0$, domain of $f: \{x \mid x \le 3\}$, range of $f: \{y \mid y \ge 0\}$, domain of $f^{-1}: \{x \mid x \ge 0\}$, range of $f^{-1}: \{y \mid y \le 3\}$, and f^{-1} is a function.

50.
$$f^{-1}(x) = x^2 - 2x \ge 0$$
, domain of $f: \{x \mid x \ge -2\}$, range of $f: \{y \mid y \ge 0\}$, domain of $f^{-1}: \{x \mid x \ge 0\}$, range of $f^{-1}: \{y \mid y \ge -2\}$, and f^{-1} is a function.

51.
$$f^{-1}(x) = 4\sqrt{2x}$$
 $x \ge 0$, domain of f : all reals, range of $f: \{y \mid y \ge 0\}$, domain of $f^{-1}: \{x \mid x \ge 0\}$, range of $f^{-1}:$ all reals, and f^{-1} is not a function.

52.
$$f^{-1}(x) = \pm \frac{1}{\sqrt{x}} x > 0$$
, domain of $f: \{x \mid x \neq 0\}$, range of $f: \{y \mid y > 0\}$, domain of $f^{-1}: \{x \mid x > 0\}$, range of $f^{-1}: \{y \mid y \neq 0\}$, and f^{-1} is not a function.

- **53.** $f^{-1}(x) = \pm \sqrt{x} + 4 \ x \ge 0$, domain of f: all reals, range of $f: \{y \mid y \ge 0\}$, domain of $f^{-1}: \{x \mid x \ge 0\}$, range of $f^{-1}:$ all reals, and f^{-1} is not a function.
- **54.** $f^{-1}(x) = 7 \pm \sqrt{x} \\ x \ge 0$, domain of f: all reals, range of $f: \{y \mid y \ge 0\}$, domain of $f^{-1}: \{x \mid x \ge 0\}$, range of $f^{-1}:$ all reals, and f^{-1} is not a function.

55.
$$f^{-1}(x) = \pm \sqrt{\frac{1}{x}} - 1 \ x > 0$$
, domain of $f: \{x \mid x \neq -1\}$, range of $f: \{y \mid y > 0\}$, domain of $f^{-1}: \{x \mid x > 0\}$, range of $f^{-1}: \{y \mid y \neq -1\}$, and f^{-1} is not a function.

Answers for Lesson 7-7 Exercises (cont.)

59. a-b. Answers may vary. Sample:

60. r is not a function because there are two y-values for one x-value. r is a function because each of its x-values has one y-value.

61. $h = s\sqrt{2}$; $3\sqrt{2}$ in. ≈ 4.2 in. **62.** Check students' work.

63. $f^{-1}(x) = \sqrt[3]{5x}$; yes **64.** $f^{-1}(x) = x^3 + 5$; yes **65.** $f^{-1}(x) = 27x^3$; yes **66.** $f^{-1}(x) = 2 + \sqrt[3]{x}$; yes **67.** $f^{-1}(x) = x^4$, $x \ge 0$; yes **68.** $f^{-1}(x) = \pm \sqrt[4]{\frac{5x}{6}}$ no