\qquad
Period:
You should complete this review without the use of a calculator.

1. Factor completely and find all of the zeros of each polynomial.
a. $y=x^{4}-64 x^{2}$

$$
x^{2}\left(x^{2}-64\right)
$$

$$
x^{2}(x+8)(x-8)
$$

$$
\text { b. } \begin{aligned}
& =2 x^{5}-12 x^{4}+18 x^{3} \\
& 2 x^{3}\left(x^{2}-6 x+9\right) \\
& 2 x^{3}(x-3)(x-3) \\
& x=0 \quad x=3
\end{aligned}
$$

$$
x=0,-8,8
$$

c. Classify each polynomial above by degree and number of terms.
quartic binome)
avintic trinomial
2. Find key features to graph each polynomial equation. (Include x-intercepts, y-intercept, end behavior, and cross/bounce)
a. $f(x)=x^{3}(x+2)(x-1)(x+5)$
b. $f(x)=x^{3}-4 x^{2}+4 x$

$$
\begin{aligned}
& x=0 \mathrm{~m} 3 \mathrm{c} \\
& x=-2 \mathrm{~m} 1 \mathrm{c} \\
& x=1 \mathrm{mlc} \\
& x=-\frac{5 \mathrm{~m}}{} \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& x\left(x^{2}-4 x+4\right) \\
& x(x-2)(x-2)
\end{aligned}
$$

$$
\begin{array}{cc}
x=0 & x=2 \\
m 1 & m 2
\end{array}
$$

3. Is $x-1$ a factor of each polynomial? Use synthetic division to assist. Justify your response.
a. $x^{3}+5 x^{2}+10 x+2$
b. $x^{3}-1$

11	5 1	10	2
1	6	16	18

4. Divide with synthetic division and then factor the polynomial completely.
a. $x^{3}-2 x^{2}-9 x+18 \div(x-2)$
b. $5 x^{3}-x^{2}-80 x+16$

$$
\begin{gathered}
5 x^{2}-80 \\
5\left(x^{2}-16\right) \rightarrow 5(x+4)(x-4)(5 x-1)
\end{gathered}
$$

5. Use the remainder theorem to evaluate $\mathrm{P}(-2)$ for each polynomial equation.
a. $P(x)=4 x^{3}+3 x^{2}-8 x+10$
b. $P(x)=x^{6}+3 x^{3}-12$

$\frac{$| $-2 \int$ | 3 | -8 | 10 |
| :---: | :---: | :---: | :---: |
| -8 | 10 | -4 | |}{$4-5$} | -5 | 6 |
| :---: | :---: | :---: |

-21	0	0	3	0	0	-12
-2	4	-8	10	-20	40	
	-2	4	-5	10	-20	28

6. Sketch the graph of an $7^{\text {th }}$ degree polynomial with a negative leading coefficient with zeros of multiplicity one at -4 and 0 , a zero of multiplicity three at 2 , and a zero of multiplicity two at 4 .

7. If $(2 x+1)$ is a factor of some polynomial, what does that tell us about the graph?

$$
\text { tels us that }-1 / 2 \text { is an } x \text {-int. }
$$

