Answers for Lesson 6-6 Exercises

1. 3 complex roots; number of real roots: 1 or 3 possible rational roots: ± 1

- 2. 2 complex roots; number of real roots: 0 or 2 possible rational roots: $\pm \frac{1}{3}$, $\pm \frac{7}{3}$, ± 1 , ± 7
- **3.** 4 complex roots; number of real roots: 0, 2, or 4 possible rational roots: 0
- **4.** 5 complex roots; number of real roots: 1, 3, or 5 possible rational roots: $\pm \frac{1}{2}$, ± 1 , $\pm \frac{5}{2}$, ± 5
- **5.** 7 complex roots; number of real roots: 1, 3, 5, or 7 possible rational roots: ± 1 , ± 3
- **6.** 1 complex root number of real roots: 1 possible rational roots: $\pm \frac{1}{4}$, $\pm \frac{1}{2}$, ± 1 , ± 2 , ± 4 , ± 8
- 7. 6 complex roots; number of real roots: 0, 2, 4, or 6 possible rational roots: $\pm \frac{1}{2}$, ± 1 , $\pm \frac{7}{2}$, ± 7
- **8.** 10 complex roots; number of real roots: 0, 2, 4, 6, 8, or 10 possible rational roots: ± 1

9.
$$-1, \frac{1 \pm i\sqrt{7}}{4}$$

10. 3,
$$\pm i$$

11.
$$4, \frac{1 \pm i\sqrt{3}}{2}$$

12.
$$2, \pm \sqrt{3}$$

13.
$$\pm 2, \pm \sqrt{2}$$

14.
$$\pm 2, \pm i$$

15.
$$0, \frac{3 \pm 3\sqrt{5}}{2}$$

16.
$$-6, \pm i$$

- **17.** 4 complex roots; number of real roots: 0, 2, or 4 possible rational roots: $\pm \frac{1}{2}$, ± 1 , ± 2 , $\pm \frac{13}{2}$, ± 13 , ± 26
- **18.** 5 complex roots; number of real roots: 1, 3, or 5 possible rational roots: ± 1 , ± 2 , ± 3 , ± 6 , ± 9 , ± 18
- **19.** 3 complex roots; number of real roots: 1 or 3 possible rational roots: $\pm \frac{1}{3}$, $\pm \frac{2}{3}$, ± 1 , $\pm \frac{4}{3}$, ± 2 , ± 3 , ± 4 , ± 6 , ± 12

21.
$$4, \pm 3i$$

22.
$$-2, \pm \sqrt{5}$$

22.
$$-2, \pm \sqrt{5}$$
 23. $-6, \frac{-1 \pm i}{2}$

24.
$$-\frac{1}{4}$$
, $-1 \pm 2i$

25.
$$\frac{1}{2}$$
, $\pm 2i\sqrt{5}$

24.
$$-\frac{1}{4}$$
, $-1 \pm 2i$ **25.** $\frac{1}{2}$, $\pm 2i\sqrt{5}$ **26.** $\frac{2}{5}$, $\frac{-1 \pm i\sqrt{11}}{6}$

27. Answers may vary. Sample: $y = x^4 + 3x^2 + 2$

28.
$$\pm 0.75$$

30. If you have no constant, then all terms have an x that can be factored out. The resulting expression will have a constant that can be used in the Rational Root Theorem.

31. Yes; for example, $2x^2 - 11x + 5 = 0$ has roots 0.5 and 5.