Answers for Lesson 5-3 Exercises

1.

$$x = 1$$

2.

$$x = -3$$

3.

$$x = 2$$

4.

5.

$$x = -7$$

6.

x = 2

7.

$$x = 5$$

$$x = -2$$

Answers for Lesson 5-3 Exercises (cont.)

9.

$$x = 1$$

10.

12.

-4

O x

$$x = -5$$

x = -8

11.

$$x = 7$$

14.
$$y = -x^2 + 4$$

16.
$$y = -(x + 2)^2$$

18.
$$y = -2x^2$$

20.
$$y = -(x-1)^2 + 2$$

28.
$$y = (x + 1)^2 + 4$$

30.
$$y = -5x^2 + 12$$

32.
$$y = 2(x + \frac{1}{4})^2 - \frac{1}{8}$$

34.
$$y = -2(x-2)^2 + 11$$

13.
$$y = \frac{1}{4}x^2$$

15.
$$y = -(x-2)^2$$

17.
$$y = (x - 2)^2$$

19.
$$y = 6(x + 3)^2 - 2$$

23.
$$(-5.5, 0), 726$$

27.
$$y = (x-2)^2 + 2$$

29.
$$y = 6x^2 - 10$$

31.
$$y = 4\left(x + \frac{7}{8}\right)^2 - \frac{49}{16}$$

33.
$$y = 4\left(x - \frac{5}{4}\right)^2 + \frac{71}{8}$$

35.
$$y = \frac{9}{4}(x + \frac{2}{3})^2 - 2$$

Answers for Lesson 5-3 Exercises (cont.)

36.

$$x = -2$$

37.

38.

$$x = -0.3$$

39.

$$x = 2$$

40.

41.

- **b.** \$277.50; \$210.00
- \$0.55
- **d.** \$300.00

43.
$$y = -7(x-1)^2 + 2$$

45.
$$y = -\frac{1}{2}(x+3)^2 + 6$$

47.
$$y = 7(x+1)^2 - 4$$

49.
$$y = -10(x - \frac{1}{10})^2 - \frac{9}{10}$$

51.
$$y = 25x^2 + 60x + 27$$

53.
$$y = 2x^2 + 22x$$

55.
$$y = -10x^2 - 40x - 40$$

44.
$$y = -\frac{4}{9}(x-3)^2 + 6$$

46.
$$y = \frac{3}{2}(x+2)^2 + 6$$

48.
$$y = -7x^2 + 5$$

50.
$$y = 8(x - \frac{1}{4})^2 - \frac{3}{2}$$

52.
$$y = -9x^2 + 24x - 10$$

54.
$$y = \frac{1}{2}x^2 - 5x + \frac{35}{2}$$

56.
$$y = 16x^2 - 8x + 2$$

- **57. a.** first: x = 4, second: x = 2.5
 - **b.** For the first spreadsheet the x_1 -values 3 and 5 are equidistant from 4 and their y_1 -values are both -3. In the second spreadsheet, the x_2 -values 2 and 3 are equidistant from 2.5 and their y_2 -values are both 2.

c.
$$y = -4(x-4)^2 + 1; y = 4(x-\frac{5}{2})^2 + 1$$

58. Each function of the family has (3, 4) as the vertex and x = 3 as the line of symmetry. Functions in the family have different stretch factors. So the equation for the family is $fx = a(x-3)^2 + 4$, where a is any real number.

61. no;
$$y = -3\left(x + \frac{1}{3}\right)^2 + \frac{4}{3}$$

63. no;
$$y = (x + 1)^2 + 7$$

65. no;
$$y = -4(x - \frac{3}{4})^2 + \frac{21}{4}$$
 66. yes

68. Any real numbers a and k such that a + k = 1 will work. However, if a = 0 and k = 1, the function will be linear rather than quadratic.

69.
$$a = 3, k = -1$$

70.
$$a = -6, k = 35$$

72.
$$a = -\frac{22}{3}, k = \frac{74}{3}$$

71.
$$a = \frac{1}{5}, k = 1$$

73.
$$a = 1, k = -650$$

- **76.** minimum; 150
- 77. Answers may vary. Sample: The graph of $y = (x 6)^2 + 7$ is the graph of $y = (x + 6)^2$ translated right 12 units and up 7 units.

78. a.
$$ah^2 + k$$

b. h = 0 or a = 0 (Note, however, that if a = 0, the function will not be quadratic.)

79.
$$y = \frac{1}{4}x^2$$

81.
$$y = -\frac{1}{4}(x-3)^2$$

83.
$$y = 2(x - 1)^2$$

80.
$$y = \frac{1}{2}(x+3)^2$$

82.
$$y = -\frac{1}{4}(x-4)^2$$

84.
$$y = -4(x+3)^2$$